A Stable Parametric Finite Element Discretization of Two-Phase Navier-Stokes Flow

نویسندگان

  • John W. Barrett
  • Harald Garcke
  • Robert Nürnberg
چکیده

We present a parametric finite element approximation of two-phase flow. This free boundary problem is given by the Navier–Stokes equations in the two phases, which are coupled via jump conditions across the interface. Using a novel variational formulation for the interface evolution gives rise to a natural discretization of the mean curvature of the interface. The parametric finite element approximation of the evolving interface is then coupled to a standard finite element approximation of the two-phase Navier–Stokes equations in the bulk. Here enriching the pressure approximation space with the help of an XFEM function ensures good volume conservation properties for the two phase regions. In addition, the mesh quality of the parametric approximation of the interface in general does not deteriorate over time, and an equidistribution property can be shown for a semidiscrete continuousin-time variant of our scheme in two space dimensions. Moreover, our finite element approximation can be shown to be unconditionally stable. We demonstrate the applicability of our method with some numerical results in two and three space dimensions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Stable finite element approximations of two-phase flow with soluble surfactant

A parametric finite element approximation of incompressible two-phase flow with soluble surfactants is presented. The Navier–Stokes equations are coupled to bulk and surfaces PDEs for the surfactant concentrations. At the interface adsorption, desorption and stress balances involving curvature effects and Marangoni forces have to be considered. A parametric finite element approximation for the ...

متن کامل

On the stable numerical approximation of two-phase flow with insoluble surfactant

We present a parametric finite element approximation of two-phase flow with insoluble surfactant. This free boundary problem is given by the Navier–Stokes equations for the two-phase flow in the bulk, which are coupled to the transport equation for the insoluble surfactant on the interface that separates the two phases. We combine the evolving surface finite element method with an approach prev...

متن کامل

Eliminating spurious velocities with a stable approximation of incompressible two-phase flow

We present a parametric finite element approximation of two-phase flow. This free boundary problem is given by the Stokes equations in the two phases, which are coupled via jump conditions across the interface. Using a novel variational formulation for the interface evolution gives rise to a natural discretization of the mean curvature of the interface. In addition, the mesh quality of the para...

متن کامل

Modeling and numerical approximation of two-phase incompressible flows by a phase-field approach

We present in this note a unified approach on how to design simple, efficient and energy stable time discretization schemes for the Allen-Cahn or Cahn-Hilliard Navier-Stokes system which models twophase incompressible flows with matching or non-matching density. Special emphasis is placed on designing schemes which only require solving linear systems at each time step while satisfy discrete ene...

متن کامل

Numerical Simulation of the Hydrodynamics of a Two-Dimensional Gas—Solid Fluidized Bed by New Finite Volume Based Finite Element Method

n this work, computational fluid dynamics of the flow behavior in a cold flow of fluidized bed is studied. An improved finite volume based finite element method has been introduced to solve the two-phase gas/solid flow hydrodynamic equations. This method uses a collocated grid, where all variables are located at the nodal points. The fluid dynamic model for gas/solid two-phase flow is based on ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • J. Sci. Comput.

دوره 63  شماره 

صفحات  -

تاریخ انتشار 2015